Recommended Residential Construction for Coastal Areas

Building on Strong and Safe Foundations

About the Cover

On August 29, 2005, Hurricane Katrina struck the Gulf Coast with recordbreaking storm surge that destroyed foundations and devastated homes from Louisiana east to Alabama. Katrina was so destructive that engineers assessing the carnage no longer looked for “success stories” (i.e., homes that were only moderately damaged), but rather searched for “survivor” homes that, while extensively damaged, still bore a slight resemblance to a residential building. Hurricane Katrina proved that, without strong foundations, homes on the coast can and will be destroyed.
Recommended Residential Construction for Coastal Areas

Building on Strong and Safe Foundations

Preface

Since the publication of the First Edition of FEMA 550 in July 2006, several advances have been made in nationally adopted codes and standards. Two editions of the International Residential Code® (the 2006 IRC® and the 2009 IRC) and the International Building Code® (the 2006 IBC® and the 2009 IBC) have been published and the long awaited International Code Council (ICC) 600 Standard for Residential Construction in High Wind Areas (a successor to the legacy standard SSTD-10) has been issued.

To keep pace with developing codes and standards and to improve its guidance, FEMA is issuing this Second Edition of FEMA 550. In addition to being renamed to more accurately reflect its applicability, the Second Edition of FEMA 550 contains a new foundation style Case H, which incorporates an elevated concrete beam for improved structural efficiency. The Second Edition of FEMA 550 has also been updated for consistency with the 2006 and 2009 editions of the IRC and IBC, and the 2005 Edition of ASCE 7 Minimum Design Loads for Buildings and Other Structures.
Acknowledgments

FEMA would like to thank the following individuals who provided information, data, review, and guidance in developing the Second Edition of this publication.

FEMA
John Ingargiola
FEMA Headquarters

Consultants
Dave Conrad
PBSJ

Deb Daly
Greenhorne & O’Mara, Inc.

Julie Liptak
Greenhorne & O’Mara, Inc.

David K. Low, PE
DK Low & Associates, LLC

Kelly Park
Greenhorne & O’Mara, Inc.

Scott Sundberg
Category X Coastal Consulting

Scott Tezak
URS Corporation

Jimmy Yeung, PhD, PE
Greenhorne & O’Mara, Inc.

In addition, FEMA would like to acknowledge the members of the project team for the First Edition of the publication. (Note: all affiliations were current as of July 2006.)
Principal Authors

Bill Coulbourne, PE
URS Corporation

Matt Haupt, PE
URS Corporation

Scott Sundberg, PE
URS Corporation

David K. Low, PE
DK Low & Associates, LLC

Jimmy Yeung, PhD, PE
Greenhorne & O’Mara, Inc.

John Squerciati, PE
Dewberry & Davis, LLC

Contributors and Reviewers

John Ingargiola
FEMA Headquarters

Shabbar Saifee
FEMA, Region IV

Dan Powell
FEMA, Region IV

Alan Springett
FEMA, Region IV

Keith Turi
FEMA Headquarters

Christopher Hudson
FEMA Headquarters

Christopher P. Jones, PE

Dan Deegan, PE, CFM
PBSJ

Ken Ford
National Association of Homebuilders (NAHB)

Mike Hornbeck
Gulf Construction Company, Inc.

David Kriebel, PhD, PE
U.S. Naval Academy

Jim Puglisi
Dewberry & Davis, LLC

John Ruble
Bayou Plantation Homes

Bob Speight, PE
URS Corporation

Deb Daly
Greenhorne & O’Mara, Inc.

Julie Liptak
Greenhorne & O’Mara, Inc.

Wanda Rizer
Design4Impact

Naomi Chang Zajic
Greenhorne & O’Mara, Inc.
Table of Contents

Preface .. iii

Acknowledgments .. v

Introduction ... xv

Chapter 1. Types of Hazards .. 1-1
 1.1 High Winds ... 1-1
 1.2 Storm Surge .. 1-5
 1.3 Flood Effects ... 1-5
 1.3.1 Hydrostatic Forces .. 1-7
 1.3.2 Hydrodynamic Forces .. 1-7
 1.3.3 Waves .. 1-8
 1.3.4 Floodborne Debris ... 1-10
 1.3.5 Erosion and Scour ... 1-10

Chapter 2. Foundations ... 2-1
 2.1 Foundation Design Criteria ... 2-1
TABLE OF CONTENTS

2.2 Foundation Design in Coastal Areas ... 2-2

2.3 Foundation Styles in Coastal Areas ... 2-4
 2.3.1 Open Foundations ... 2-5
 2.3.1.1 Piles .. 2-5
 2.3.1.2 Piers .. 2-7
 2.3.2 Closed Foundations ... 2-8
 2.3.2.1 Perimeter Walls .. 2-8
 2.3.2.2 Slab-on-Grade .. 2-10

2.4 Introduction to Foundation Design and Construction 2-11
 2.4.1 Site Characterization ... 2-11
 2.4.2 Types of Foundation Construction ... 2-12
 2.4.2.1 Piles .. 2-12
 2.4.2.2 Diagonal Bracing of Piles ... 2-13
 2.4.2.3 Knee Bracing of Piles .. 2-14
 2.4.2.4 Wood-Pile-to-Wood-Girder Connections 2-15
 2.4.2.5 Grade Beams in Pile/Column Foundations 2-15

Chapter 3. Foundation Design Loads .. 3-1

 3.1 Wind Loads .. 3-2

 3.2 Flood Loads .. 3-2
 3.2.1 Design Flood and DFE ... 3-2
 3.2.2 Design Stillwater Flood Depth (d_s) ... 3-4
 3.2.3 Design Wave Height (H_b) ... 3-5
 3.2.4 Design Flood Velocity (V) .. 3-5

 3.3 Hydrostatic Loads ... 3-6

 3.4 Wave Loads .. 3-7
 3.4.1 Breaking Wave Loads on Vertical Piles ... 3-8
 3.4.2 Breaking Wave Loads on Vertical Walls .. 3-8

 3.5 Hydrodynamic Loads ... 3-9

 3.6 Debris Impact Loads .. 3-12
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 Erosion and Localized Scour</td>
<td>3-14</td>
<td></td>
</tr>
<tr>
<td>3.7.1 Localized Scour Around Vertical Piles</td>
<td>3-15</td>
<td></td>
</tr>
<tr>
<td>3.7.2 Localized Scour Around Vertical Walls and Enclosures</td>
<td>3-19</td>
<td></td>
</tr>
<tr>
<td>3.8 Flood Load Combinations</td>
<td>3-19</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4. Overview of Recommended Foundation Types and Construction for Coastal Areas

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Critical Factors Affecting Foundation Design</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.1 Wind Speed</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.2 Elevation</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1.3 Construction Materials</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.3.1 Masonry Foundation Construction</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.3.2 Concrete Foundation Construction</td>
<td>4-4</td>
</tr>
<tr>
<td>4.1.3.3 Field Preservative Treatment for Wood Members</td>
<td>4-5</td>
</tr>
<tr>
<td>4.1.4 Foundation Design Loads</td>
<td>4-5</td>
</tr>
<tr>
<td>4.1.5 Foundation Design Loads and Analyses</td>
<td>4-8</td>
</tr>
<tr>
<td>4.2 Recommended Foundation Types for Coastal Areas</td>
<td>4-14</td>
</tr>
<tr>
<td>4.2.1 Open/Deep Foundation: Timber Pile (Case A)</td>
<td>4-15</td>
</tr>
<tr>
<td>4.2.2 Open/Deep Foundation: Steel Pipe Pile with Concrete Column and Grade Beam (Case B)</td>
<td>4-17</td>
</tr>
<tr>
<td>4.2.3 Open/Deep Foundation: Timber Pile with Concrete Column and Grade Beam (Case C)</td>
<td>4-17</td>
</tr>
<tr>
<td>4.2.4 Open/Deep Foundation: Timber Pile with Concrete Grade and Elevated Beams and Concrete Columns (Case H)</td>
<td>4-19</td>
</tr>
<tr>
<td>4.2.5 Open/Shallow Foundation: Concrete Column and Grade Beam with Slabs (Cases D and G)</td>
<td>4-21</td>
</tr>
<tr>
<td>4.2.6 Closed/Shallow Foundation: Reinforced Masonry – Crawlspace (Case E)</td>
<td>4-21</td>
</tr>
<tr>
<td>4.2.7 Closed/Shallow Foundation: Reinforced Masonry – Stem Wall (Case F)</td>
<td>4-23</td>
</tr>
</tbody>
</table>

Chapter 5. Foundation Selection

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Foundation Design Types</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Foundation Design Considerations</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3 Cost Estimating</td>
<td>5-4</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

5.4 How to Use This Manual ... 5-4
5.5 Design Examples ... 5-7

Appendices
Appendix A Foundation Designs
Appendix B Pattern Book Design
Appendix C Assumptions Used in Design
Appendix D Foundation Analysis and Design Examples
Appendix E Cost Estimating
Appendix F Pertinent Coastal Construction Information
Appendix G FEMA Publications and Additional References
Appendix H Glossary
Appendix I Abbreviations and Acronyms

Tables
Chapter 2
Table 2-1. Foundation Type Dependent on Coastal Area... 2-5

Chapter 3
Table 3-1. Building Category and Corresponding Dynamic Pressure Coefficient (C_p)........ 3-9
Table 3-2. Drag Coefficient Based on Width to Depth Ratio... 3-11
Table 3-3. Example Foundation Adequacy Calculations for a Two-Story Home Supported on Square Timber Piles... 3-17
Table 3-4. Local Scour Depth as a Function of Soil Type .. 3-19
Table 3-5. Selection of Flood Load Combinations for Design .. 3-21

Chapter 4
Table 4-1a. Design Perimeter Wall Reactions (lb/lf) for One-Story Elevated Homes 4-7
Table 4-1b. Design Perimeter Wall Reactions (lb/lf) for Two-Story Elevated Homes 4-7
Table 4-2. Flood Forces (in pounds) on an 18-Inch Square Column 4-7
Table 4-3. Wind Reactions Used to Develop Case H Foundations................................. 4-8
Table 4-4. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 10-Foot Tall 3-Bay Foundations .. 4-10
Table 4-5. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 15-Foot Tall 3-Bay Foundations .. 4-11
Table 4-6. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 10-Foot Tall 6-Bay Foundations .. 4-12
Table 4-7. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 15-Foot Tall 6-Bay Foundations .. 4-12
Table 4-8. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 10-Foot Tall 9-Bay Foundations .. 4-13
Table 4-9. Design Moments (K-ft), Axial Loads (in kips), and Shears (in kips) for 15-Foot Tall 9-Bay Foundations .. 4-14
Table 4-10. Recommended Foundation Types Based on Zone .. 4-15

Chapter 5
Table 5-1a. Foundation Design Cases for One-Story Homes Based on Height of Elevation and Wind Velocity .. 5-10
Table 5-1b. Foundation Design Cases for Two-Story Homes Based on Height of Elevation and Wind Velocity .. 5-11

Figures

Introduction

Figure 1. Damage to residential properties as a result of Hurricane Katrina’s winds and storm surge. Note the building that was knocked off its foundationxvi

Figure 2. Schematic range of home dimensions and roof pitches used as the basis for the foundation designs presented in this manual. ..xviii

Chapter 1

Figure 1-1. Wind damage to roof structure and gable end wall from Hurricane Katrina (2005) (Pass Christian, Mississippi) .. 1-2

Figure 1-2. Saffir-Simpson Scale .. 1-3
Table of Contents

Figure 1-3. Wind speeds (in mph) for the entire U.S. 1-4

Figure 1-4. Graphical depiction of a hurricane moving ashore. In this example, a 15-foot surge added to the normal 2-foot tide creates a total storm tide of 17 feet. 1-5

Figure 1-5. Storm tide and waves from Hurricane Dennis on July 10, 2005, near Panacea, Florida. .. 1-6

Figure 1-6. Comparison of storm surge levels along the shorelines of the Gulf Coast for Category 1, 3, and 5 storms. .. 1-6

Figure 1-7. Building floated off of its foundation (Plaquemines Parish, Louisiana). 1-7

Figure 1-8. Aerial view of damage to one of the levees caused by Hurricane Katrina. 1-8

Figure 1-9. During Hurricane Opal (1995), this house was in an area of channeled flow between large buildings. As a result, the house was undermined and washed into the bay behind a barrier island. .. 1-8

Figure 1-10. Storm waves breaking against a seawall in front of a coastal residence at Stinson Beach, California. ... 1-9

Figure 1-11. Storm surge and waves overtopping a coastal barrier island in Alabama (Hurricane Frederic, 1979) .. 1-9

Figure 1-12. Pier piles were carried over 2 miles by the storm surge and waves of Hurricane Opal (1995) before coming to rest in Pensacola Beach, Florida. . 1-10

Figure 1-13. Extreme case of localized scour undermining a slab-on-grade house in Topsail Island, North Carolina, after Hurricane Fran (1996) 1-11

Chapter 2

Figure 2-1. Recommended open foundation practice for buildings in A zones, Coastal A zones, and V zones. .. 2-3

Figure 2-2. Slab-on-grade foundation failure due to erosion and scour undermining from Hurricane Dennis, 2005 (Navarre Beach, Florida). 2-3

Figure 2-3. Compression strut at base of a wood pile. Struts provide some lateral support for the pile, but very little resistance to rotation. 2-6

Figure 2-4. Near collapse due to insufficient pile embedment (Dauphin Island, Alabama). ... 2-6

Figure 2-5. Successful pile foundation following Hurricane Katrina (Dauphin Island, Alabama). ... 2-6
Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-6.</td>
<td>Column connection failure (Belle Fontaine Point, Jackson County, Mississippi)</td>
<td>2-7</td>
</tr>
<tr>
<td>Figure 2-7.</td>
<td>Performance comparison of pier foundations. Piers on discrete footings failed while piers on more substantial footings survived (Pass Christian, Mississippi)</td>
<td>2-8</td>
</tr>
<tr>
<td>Figure 2-8.</td>
<td>Isometric view of an open foundation with grade beam</td>
<td>2-9</td>
</tr>
<tr>
<td>Figure 2-9.</td>
<td>Isometric view of a closed foundation with crawlspace</td>
<td>2-10</td>
</tr>
<tr>
<td>Figure 2-10.</td>
<td>Pile installation methods</td>
<td>2-12</td>
</tr>
<tr>
<td>Figure 2-11.</td>
<td>Diagonal bracing schematic</td>
<td>2-14</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1.</td>
<td>Wind speeds (in mph) for the entire U.S.</td>
<td>3-3</td>
</tr>
<tr>
<td>Figure 3-2.</td>
<td>Parameters that determine or are affected by flood depth</td>
<td>3-4</td>
</tr>
<tr>
<td>Figure 3-3.</td>
<td>Normally incident breaking wave pressures against a vertical wall (space behind vertical wall is dry)</td>
<td>3-10</td>
</tr>
<tr>
<td>Figure 3-4.</td>
<td>Normally incident breaking wave pressures against a vertical wall (stillwater level equal on both sides of wall)</td>
<td>3-10</td>
</tr>
<tr>
<td>Figure 3-5.</td>
<td>Distinguishing between coastal erosion and scour. A building may be subject to either or both, depending on the building location, soil characteristics, and flood conditions</td>
<td>3-14</td>
</tr>
<tr>
<td>Figure 3-6.</td>
<td>Scour at vertical foundation member stopped by underlying scour-resistant stratum</td>
<td>3-16</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-1.</td>
<td>The BFE, freeboard, erosion, and ground elevation determine the foundation height required</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4-2.</td>
<td>Design loads acting on a column</td>
<td>4-6</td>
</tr>
<tr>
<td>Figure 4-3.</td>
<td>Shear panel reactions for the 3- and 6-bay models. Reactions for the 9-bay model were similar to those of the 6-bay</td>
<td>4-10</td>
</tr>
<tr>
<td>Figure 4-4.</td>
<td>Profile of Case A foundation type</td>
<td>4-16</td>
</tr>
<tr>
<td>Figure 4-5.</td>
<td>Profile of Case B foundation type</td>
<td>4-18</td>
</tr>
<tr>
<td>Figure 4-6.</td>
<td>Profile of Case C foundation type</td>
<td>4-19</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-7</td>
<td>Profile of Case H foundation type.</td>
<td>4-20</td>
</tr>
<tr>
<td>Figure 4-8</td>
<td>Profile of Case G foundation type.</td>
<td>4-22</td>
</tr>
<tr>
<td>Figure 4-9</td>
<td>Profile of Case D foundation type.</td>
<td>4-23</td>
</tr>
<tr>
<td>Figure 4-10</td>
<td>Profile of Case F foundation type.</td>
<td>4-24</td>
</tr>
<tr>
<td>Figure 4-11</td>
<td>Profile of Case E foundation type.</td>
<td>4-24</td>
</tr>
</tbody>
</table>

Chapter 5

Figure 5-1	Schematic of a basic module and two footprints.	5-3
Figure 5-2	Foundation selection decision tree	5-8
Figure 5-3	“T” shaped modular design	5-12
Figure 5-4	“L” shaped modular design	5-12
Figure 5-5	“Z” shaped modular design	5-13